Please check the examination details below before entering your candidate information					
Candidate surname		Other names			
Centre Number Candidate Number Pearson Edexcel Level 3 GCE					
Tuesday 14 May 202	4				
Morning (Time: 1 hour 30 minutes)	Morning (Time: 1 hour 30 minutes) Paper reference 8CH0/01				
Chemistry Advanced Subsidiary PAPER 1: Core Inorganic a	and Phy	sical Chemistry			
You must have: Scientific calculator, Data Booklet		Total Marks			

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- For the question marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically, showing the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions.

Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- What is the electronic configuration of the phosphide ion, ${}_{15}^{31}P^{3-}$?
 - **A** $1s^22s^22p^63s^23p^3$ X
 - **B** $1s^22s^22p^63s^23p^6$ X
 - $C 1s^2 2s^2 2p^6 3s^2$ X
 - **D** $1s^22s^22p^63p^6$ X

(Total for Question 1 = 1 mark)

- 2 Which could be the first four successive ionisation energies, in kJ mol⁻¹, of a Group 4 element?
 - 496 4563 6913 9544
 - X В 900 1757 14849 21007
 - X C 801 2427 3610 25026
 - X **D** 1086 2353 6223 4621

(Total for Question 2 = 1 mark)

- Which pair of responses show the trend in atomic radii of atoms, excluding the noble gases (Group 0)?
 - Trend down Group 2 Trend across Period 2 X Α increasing increasing X decreasing В increasing X C decreasing decreasing D X decreasing increasing

(Total for Question 3 = 1 mark)

4	A student was provided with three aqueous solutions of potassium chloride, potassium bromide and potassium iodide.	
	To identify the halide present, dilute nitric acid and silver nitrate solution were added	
	to each of the three solutions.	
	(a) (i) Give the observations that the student would make in each case.	(2)
		(3)
KC]	
KB	Jr	
ΚI		
	(ii) Describe how the student could confirm the halide ions present in the products of (a)(i) by adding ammonia solutions .	(3)
		(3)

(b) Nitric acid removes other ions that would interfere with the halide test, for example carbonate ions.

(i) State the observation when silver nitrate is added to a solution of carbonate ions in the **absence** of nitric acid.

(1)

(ii) State the observation when nitric acid is added to a solution of carbonate ions.

(1)

(iii) Write the ionic equation for the reaction of nitric acid with carbonate ions. Include state symbols.

(2)

(Total for Question 4 = 10 marks)

BLANK PAGE

5 This question is about chlorine dioxide, CIO₂, and the chlorate(III) ion, CIO₂.

Chlorine dioxide can be used to sterilise drinking water. Chlorine dioxide is a gas at room temperature and pressure (r.t.p.).

Chlorine dioxide can be prepared by reacting sodium chlorate(III) with hydrochloric acid.

The equation for this reaction is shown.

$$5NaCIO_2 + 4HCI \rightarrow 5NaCI + 4CIO_2 + 2H_2O$$

(a) Chlorine dioxide is very toxic by inhalation and skin absorption.

State **two** precautions that must be taken when preparing chlorine dioxide in a laboratory.

You may assume that a lab coat and eye protection are worn.

(2)

(b) Calculate the mass of sodium chlorate(III) needed to make 5.40 g of chlorine dioxide.

[
$$A_r$$
 values: H = 1.00 O = 16.0 Na = 23.0 CI = 35.5]

(4)

(c) (i) Chlorine dioxide decomposes to form chlorine and oxygen.

The equation for this decomposition is shown.

$$2CIO_2(g) \rightarrow CI_2(g) + 2O_2(g)$$

Calculate the **increase** in volume, in **cm**³, when 0.125 mol of chlorine dioxide gas completely decomposes.

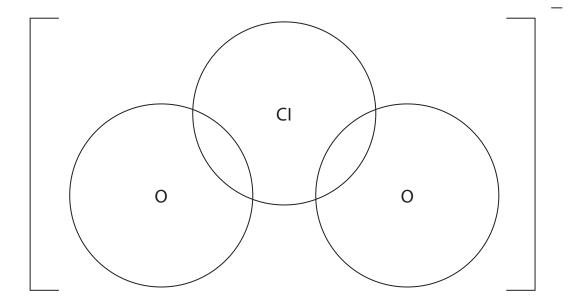
[Molar gas volume = $24.0 \, \text{dm}^3 \, \text{mol}^{-1}$]

(2)

(ii) A swimming pool contains 400 m³ water. Chlorine dioxide has been suggested as a disinfectant for use in swimming pools.

Calculate the mass of **chlorine dioxide** needed to produce a concentration of chlorine of $7.82 \times 10^{-8} \, \text{mol dm}^{-3}$ in this pool. Give your answer to an appropriate number of significant figures.

(3)


(d) The **strongest** of the attractions between molecules in liquid chlorine dioxide is

(1)

- A covalent bonding
- **B** hydrogen bonding
- C ionic bonding
- **D** permanent dipoles
- (e) (i) Complete a dot-and-cross diagram for the chlorate(III) ion, CIO₂.

Use crosses (\mathbf{x}) for chlorine electrons, dots (\bullet) for oxygen electrons and a triangle (Δ) for the extra electron.

(2)

	(ii)	Prec	dict the bond angle in this ion. Justify your answer.	(3)
(f)	Wha	at is	the oxidation number of oxygen in the chlorate(III) ion, CIO_2^- ?	(1)
	X	A	-1	,
	X	В	+1	
	X	C	-2	
	X	D	+2	
			(Total for Question 5 – 18 ma	rks)

- 6 This question is about mass spectrometry and relative atomic mass.
 - (a) Compound **A** contains carbon, hydrogen and oxygen only. Analysis shows that the percentage composition, by mass, of **A** is 26.7% carbon, 2.2% hydrogen and the remainder is oxygen.

Molar mass of $\mathbf{A} = 90 \,\mathrm{g} \,\mathrm{mol}^{-1}$

(i) Calculate the empirical formula of compound **A**.

(3)

(ii) Calculate the **molecular** formula of compound **A**.

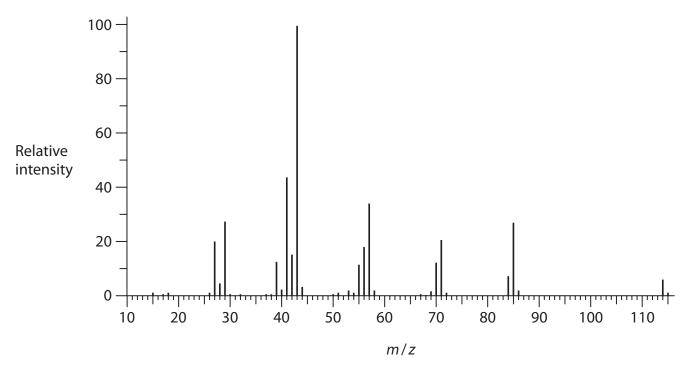
(1)

(b) A mass spectrometer was used to obtain the mass number and relative abundance of each isotope of an unknown element, **B**.

Mass number of isotope	Relative isotopic abundance/%
50	4.31
52	83.76
53	9.55
54	2.38

Calculate the relative atomic mass of **B**, using data from the table. Give your answer to **two** decimal places.

(2)


(c) Cations are formed in a mass spectrometer.

Which species is a cation?

(1)

		Number of protons	Number of neutrons	Number of electrons
×	A	3	4	3
×	В	6	6	6
×	C	12	12	10
×	D	35	44	36

(d) The mass spectrum of another compound, ${\bf D}$, is shown.

Use the spectrum to determine the relative molecular mass of compound **D**.

(1)

(Total for Question 6 = 8 marks)

BLANK PAGE

7		s question is about comparing the chemical and physical properties of Group 1 d Group 2 compounds.	
	*(a)	Potassium chloride and potassium bromide are white crystalline solids which react with concentrated sulfuric acid.	
		Give the observations in these reactions and an explanation, using oxidation numbers, of which is the stronger reducing agent.	
		Include equations for any reactions that occur.	(6)

0	
Ž.	
8 1	
Ž I	
X	
2	
8	
8	
ζ.	
8	
Ş I	
2	
Χ	
2	
Ŏ.	
2	
<_	
2	
8	
$^{\circ}$	
\langle	
2	
8	
2	
\times	
\Diamond	
\approx 1	
$\stackrel{\wedge}{\sim}$	
\times	
$\stackrel{\circ}{\sim}$	
8	
2	
\times	
2	
Χ	
8	
ζ.	
\otimes	
\Diamond	
ΧI	
8	
ΧI	
8	
ŏ I	
8	
Š I	
8	
ž I	
8	
<> □	
2	
Ž I	
\times	
× l	
\otimes	
Ŷ.	
\approx	
2	
\sim	
2	
\otimes	
\times	
\sim	
2	
×.	
8	
\Diamond	
\approx	
2	
×	
\times	
\Diamond	
\approx	
2	
Ž I	
8	
$\stackrel{\circ}{\sim}$	
8 1	
2	
Š I	
8	
ζ.	
8	
2	
Š I	
8	
ζ I	
8	
\Diamond	
X I	
8	
ζ I	
8	
ζ.	
8	
\Diamond	
8	
2	
ζI	
8	
× I	
8	
Š I	
\otimes	
2	
ΧI	
8	
Ž I	
8	
\Diamond	
X	
2	
Š I	
8	
\Diamond	
X	
8	
Š I	
8	
Ķ I	
8	
<u>۾</u> ا	
8	
2	
ζ I	
8	
χI	
8	
Ŏ.	
\vee	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) A student was asked to confirm the cation present in a sample of white powder that was known to be a Group 1 compound. The student carried out a flame test using the procedure shown.

Procedure

- Step **1** A platinum wire was first cleaned by dipping it into concentrated hydrochloric acid and then heating in a colourless Bunsen flame.
- Step 2 After cleaning, the cleaned wire was dipped into a fresh, clean sample of concentrated hydrochloric acid and then into the white powder to pick up a sample for testing.
- Step 3 The sample was tested by placing the wire in the colourless Bunsen flame.

Result

The flame was coloured lilac.

(i) State a reason why, in Step 2, the acid used was hydrochloric acid.

(1)

(ii) Identify the cation present in this sample of white powder.

(1)

- (c) The thermal stability of compounds in Group 2 is investigated.
 - (i) Draw a labelled diagram of apparatus that would enable you to compare the thermal stability of Group 2 carbonates.

(2)

(State the conditions that must be used with the apparatus shown in your diagram to ensure that the test is fair.	(2)
(i	State what data could be obtained in this experiment to compare thermal stability.	(1)

(iv) Which pair of responses show the trend in thermal stability of compounds

		Carbonates	Nitrates
X	A	increasing	decreasing
X	В	decreasing	decreasing
X	C	increasing	increasing
×	D	decreasing	increasing

down Group 2?

(1)

(d) The table shows the electrical conductivity of some pure substances in the solid and liquid states.

	Electrical conductivity		
Substance	Solid state	Liquid state	
potassium chloride	poor	good	
iron	good	good	
water	poor	poor	

Explain the electrical conductivity of potassium chloride, iron and water in the solid and liquid states.	um chloride, iron and water in the	
sona ana nquia states.	(4)	

(Total for Question 7 = 18 marks)

8	This question is about the physical properties of some substances.	
	(a) Water is able to dissolve many compounds.	
	(i) Explain, using suitable labelled diagrams, why water is a good solvent for calcium chloride.	(4)
	(ii) Explain why methanol dissolves in water. Include a suitable labelled diagram.	
		(3)

(3)

- (b) The boiling temperature of a compound is dependent on the intermolecular forces present and the shape of the molecule.
 - (i) Data about two isomeric alkanes are shown.

Compound	Formula	Boiling temperature / K		
2,2-dimethylpropane	C(CH ₃) ₄	283		
pentane	CH ₃ (CH ₂) ₃ CH ₃	309		

Explain why pentane has	a higher	boiling	temperature	thar
2,2-dimethylpropane.				

(ii) Data about two silicon compounds are shown.

Name of compound	Formula	Boiling temperature / K		
silicon(IV) oxide	SiO ₂	2503		
silicon tetrachloride	SiCI ₄	331		

Explain why these two covalently bonded substances have very different boiling temperatures.

(4)

(Total for Question 8 = 14 marks)

- **9** This question is about some redox reactions.
 - (a) Iodine is reduced by thiosulfate ions. The relevant half-equations are shown.

$$1/2I_2 + e^- \rightarrow I^-$$

 $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^-$

Deduce an overall equation for this reaction. State symbols are not required.

(1)

(b) In a different redox reaction, the chlorate(I) ion, CIO⁻, can react with the chloride ion as shown in this equation.

$$CIO^- + CI^- + 2H^+ \rightarrow CI_2 + H_2O$$

(i) State a reason why this is **not** a disproportionation reaction.

(1)

(ii) Identify the reducing agent in this reaction.

(1)

(iii) Which is the half-equation for the chlorate(I) ion, CIO⁻, in this reaction?

(1)

$$\blacksquare$$
 A CIO⁻ + CI⁻ \rightarrow CI₂ + ½O₂ + 2e⁻

$$\blacksquare$$
 B CIO⁻ + H⁺ + e⁻ \rightarrow ½CI₂ + OH⁻

$$\square$$
 C CIO⁻ + 2H⁺ + e⁻ \rightarrow ½CI₂ + H₂O

$$\square$$
 D $CIO^- \rightarrow \frac{1}{2}CI_2 + \frac{1}{2}O_2 + e^-$

(c) A 5.00 g sample of solid potassium chlorate(V) was heated until fully decomposed.

The equation for this reaction is shown.

$$2KCIO_3(s) \rightarrow 2KCI(s) + 3O_2(g)$$

Calculate the volume, **in cm**³, of oxygen produced at a temperature of 30 °C and pressure of 110 000 Pa.

[The ideal gas equation is pV = nRTMolar mass of $KCIO_3 = 122.6 \,\mathrm{g}\,\mathrm{mol}^{-1}$ Gas constant $(R) = 8.31 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$]

(5)

(Total for Question 9 = 9 marks)

TOTAL FOR PAPER = 80 MARKS

0 (8)	(18) 4.0 He helium 2	20.2 Ne neon	39.9 Ar argon 18	83.8 Krypton 36	Xenon xenon 54	[222] Rn radon 86	ted		
1	(17)	19.0 F fluorine 9	35,5 CI chlorine 17	79.9 Br bromine 35	126.9 I fodine 53	[210] At astatine 85	een repor	175 Lu lutetium 71	[257] Lr lawrencium
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	Se selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	116 have b	173 Yb ytterbium 70	[254] No nobelium
ĸ	(15)	14.0 N nitrogen 7	31.0 P	74.9 AS arsenic 33	Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated	Tm thulium 69	[256] Md mendelevium
4	(14)	12.0 C carbon 6	Si Silicon	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb tead 82	atomic nur but not fi	167 Er erbium 68	[253] Fm fermium
m	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga gallium 31	In In indium 49	204.4 TI thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated	165 Ho holmium 67	[251] [254] Cf Es californium einsteinium
3	(12)		65.4 Zn zinc 30	112.4 Cd cadmium 48	200.6 Hg mercury 80	Elem	163 Dy dysprosium 66	[251] Cf californium	
	(#)		63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79	[272] Rg roentgenium	159 Tb terbium 65	[245] BK berketium	
5		(10)		58.7 Ni nickel 28	106.4 Pd palladium 46	195.1 Pt platinum 78	Ds damstadtlum 110	157 Gd gadolinium 64	[247] Cm
1.0 Let 100 Let 11 Let 1		hydrogen 1 (8) (9)		58.9 Co cobalt 27	Rh rhodium 45	192.2 Ir iridium 77	[268] [271] Mt Ds metrnerium damstadtium 109 110	152 Eu europium 63	[243] Am
	1.0 H hydrogen			55.8 Fe iron 26	Ru Ru ruthenium 44	190.2 Os osmium 76	[277] Hs hassium 108	150 Sm samarium 62	[237] [242] Np Pu
in in the second		<u> </u>			[98] Tc technetium 43	Re rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61	[237] Np
2	nass ool	mass. bol umber	(9)	52.0 54.9 Cr Mn chromium manganese 24 25	95.9 [98] Mo Tc motybdenum technetium 42 43	183.8 W tungsten 74	[266] Sg seaborgium 106	144 Nd neodymium 60	238 U
	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium 23	92.9 Nb niobium 41	180.9 Ta tantalum 73	[262] Db dubnium 105	141 144 [147] Pr Nd Pm praseodymium promethium 59 60 61	[231] Pa
	relati ato atomic	(4)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf rutherfordium 104	Cerium 58	232 Th	
	(3)		Sc Scandium 21	88.9 Y yttrium 39	138.9 La* !anthanum 57	[227] Ac* actinium 89	ži.		
7	(2)	9.0 Be berytlium 4	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 56	[226] Ra radium 88	* Lanthanide series * Actinide series	
•	ε	6.9 Li lithium 3	Na Sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	* Lanth	